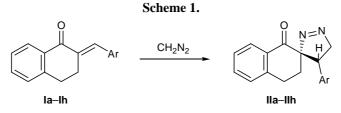
Russian Journal of Organic Chemistry, Vol. 40, No. 4, 2004, pp. 470–473. Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 4, 2004, pp. 501–504. Original Russian Text Copyright © 2004 by Molchanov, Korotkov, Kostikov.

Reactions of Aliphatic Diazo Compounds: VI.* Reactions of Diazomethane and Ethyl Diazoacetate with (*E*)-2-Arylmethylene-1,2,3,4-tetrahydronaphthalen-1-ones

A. P. Molchanov, V. S. Korotkov, and R. R. Kostikov

St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia

Reeived October 1, 2003


Abstract—Diazomethane and ethyl diazoacetate add to (*E*)-2-arylmethylene-1,2,3,4-tetrahydronaphthalen-1ones in a regio- and stereoselective fashion, yielding the corresponding 4'-aryl-1,2,3,4,4',5'-hexahydro-3'*H*-naphthalene-2-spiro-3'-pyrazol-1-ones. The products formed by addition of ethyl diazoacetate undergo isomerization into 4,5-dihydro-1*H*-pyrazole derivatives.

We previously showed that 1,3-dipolar cycloaddition of ethyl diazoacetate to 1,3-diaryl-2-propen-1-ones occurs with high regioselectivity to afford isomeric 4,5-dihydro-1*H*-pyrazoles [2]. Reactions of diazomethane with α , β -unsaturated cyclic ketones having an exocyclic double bond, e.g., 2-arylmethylene-3-phenyl-1-indanones, 3-arylmethyleneflavanones, etc. [3], were studied by many authors. It was found that the process is regioselective and that the products are spiro-4,5-dihydro-3*H*-pyrazoles. However, there are no published data on reactions of such compounds with diazoacetic acid esters.

We have studied reactions of diazomethane and ethyl diazoacetate with (*E*)-2-arylmethylene-1,2,3,4tetrahydronaphthalen-1-ones **Ia–Ih**. Diazomethane reacted with compounds **Ia–Ih** in diethyl ether at 0°C to afford 37–69% of the corresponding 4'-aryl-1,2,3,4,-4',5'-hexahydro-3'*H*-naphthalene-2-spiro-3'-pyrazol-1ones **IIa–IIh** (Scheme 1). The structure of products **IIa–IIh** was determined on the basis of their spectral parameters and elemental compositions. The IR spectra of **IIa–IIh** lacked NH absorption, while their ¹H NMR spectra contained signals from the 4'-H proton in the pyrazole ring as a doublet of doublets at δ 3.82– 4.31 ppm and signals from two 5'-H protons in the δ region of 5.0 ppm. According to our previous data and those reported in [4], the phenyl group in compound **IIa** is arranged *trans* with respect to the carbonyl group.

Reactions of tetralones **Ia–Id**, **If**, and **Ii** with ethyl diazoacetate in toluene at 90–95°C in 120 h afforded up to 56% of the corresponding ethyl 4'-aryl-1-oxo-1,2,3,4,-4',5'-hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'-carboxylates **IIIa–IIIf** (Scheme 2).

The structure of compounds **IIIa–IIIf** was derived from their elemental analyses and spectral data. The IR spectra of **IIIa–IIIf** contained an absorption band at 3370 cm⁻¹ due to NH group. In the ¹H NMR spectra we observed a singlet at δ 9.25–9.52 ppm (NH), a singlet at δ 4.57–4.92 ppm from 4'-H, and also signals from aromatic protons and protons of the ethyl and –CH₂CH₂– groups. The signal from the aromatic *ortho* protons appears as a broadened singlet at room temperature; on heating to 50°C it is converted into

 $Ar = Ph(\mathbf{a}), 4-MeC_{6}H_{4}(\mathbf{b}), 4-ClC_{6}H_{4}(\mathbf{c}), 4-BrC_{6}H_{4}(\mathbf{d}), 4-MeOC_{6}H_{4}(\mathbf{e}), 3-MO_{2}C_{6}H_{4}(\mathbf{f}), 3-MeOC_{6}H_{4}(\mathbf{g}), 2-ClC_{6}H_{4}(\mathbf{h}).$

1070-4280/04/4004-0470 © 2004 MAIK "Nauka/Interperiodica"

^{*} For communication V, see [1].

Ii, Ar = 4-NO₂C₆H₄; **III**, Ar= Ph (a), 4-MeC₆H₄ (b), 4-ClC₆H₄ (c), 4-BrC₆H₄ (d), 4-NO₂C₆H₄ (e), 3-NO₂C₆H₄ (f).

a doublet with J = 8.0 Hz. This patten may be interpreted in terms of restrictied rotation of the aryl group in molecules **IIIa–IIIf** due to spatial interaction with the $-C^{3}H_{2}C^{4}H_{2}$ – group, which is possible only when the aromatic and carbonyl groups are arranged *trans*. The ¹H–¹H NOESY spectrum of compound **IIIb** displayed interaction between the $C^{3}H_{2}$ protons, protons in the *ortho* position of the aromatic ring, and NH proton, whereas no interaction between NH and 4'-H was observed. The ¹³C NMR spectrum of **IIIa** contained signals at δ_{C} 14.9 (CH₃), 26.1 (CH₂), 29.2 (CH₂), 54.0 (CH), 60.8 (CH₂), 74.1 (C), 162.5 (CO), and 194.1 ppm (CO), as well as signals from the aromatic carbon atoms. The signal from $C^{3'}$ (where the ester group is attached) is located at δ 130–145 ppm.

Thus the reactions of diazomethane and ethyl diazoacetate with 2-arylmethylenetetrahydronaphthalen-1-ones **I** are regio- and stereoselective, and the nucleophilic carbon atom in the diazo compound adds at the unsaturated carbon atom in the β -position with respect to the carbonyl group, i.e., in keeping with the Auvers rule.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrophotometer from 2% solutions in CHCl₃. The ¹H and ¹³C NMR spectra were recorded on a Bruker DPX-300 instrument at 300.13 and 75.47 MHz, respectively, from solutions in DMSO- d_6 . The reaction mixtures were analyzed, and the purity of the products was checked, by TLC on Silufol UV-254 plates. Initial 2-arylmethylene-1,2,3,4-tetrahydronaphthalen-1-ones **Ia–Ii** were synthesized as described in [5].

4'-Aryl-1,2,3,4,4',5'-hexahydro-3'*H*-naphthalene-2-spiro-3'-pyrazol-1-ones IIa–IIh (general procedure). A solution of diazomethane in diethyl ether, prepared from 5 g (49 mmol) of *N*-nitrosomethylurea, was added to a cold solution of 4 mmol of the corresponding 2-arylmethylene-1,2,3,4-tetrahydronaphthalen-1-one **Ia–Ih** in 10 ml of benzene, and the mixture was left overnight. The solvent was evaporated, and the residue was recrystallized from ethanol.

4'-Phenyl-1,2,3,4,4',5'-hexahydro-3'*H***-naphthalene-2-spiro-3'-pyrazol-1-one (IIa).** Yield 54%, mp 70–72°C. IR spectrum, v, cm⁻¹: 920, 1300, 1455, 1600 s, 1680 v.s, 2940, 3030. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.73 m (1H), 2.10 d.t (1H, *J* = 14, 5), 2.77 d.t (1H, *J* = 17, 5), 3.23 m (1H), 3.90 d.d (1H, *J* = 7, 6), 4.98 d. d (1H, *J* = 18, 7), 5.00 d. d (1H, *J* = 18, 6), 7.05 d (1H, *J* = 7), 7.19–7.33 (3H), 7.36–7.48 (2H), 7.65 t (1H, *J* = 8), 7.95 d (1H, *J* = 8). Found %: C 78.04; H 5.87; N 9.87. C₁₈H₁₆N₂O. Calculated, %: C 78.24; H 5.84; N 10.14.

4'-(4-Methylphenyl)-1,2,3,4,4',5'-hexahydro-3'*H***naphthalene-2-spiro-3'-pyrazol-1-one (IIb). Yield 60%, mp 119–121°C. IR spectrum, v, cm⁻¹: 920, 1030, 1120, 1160, 1245, 1300, 1455, 1600 s, 1690 v.s, 2930, 3040. ¹H NMR spectrum (CDCl₃), \delta, ppm (***J***, Hz): 1.93 m (1H), 2.20 d. t (1H,** *J* **= 14, 5), 2.33 s (3H), 2.88 d.t (1H,** *J* **= 17, 5), 3.52 m (1H), 3.88 d.d (1H,** *J* **= 7, 5), 5.03 d.d (1H,** *J* **= 18, 7), 5.05 d. d (1H,** *J* **= 18, 5), 6.85 d (2H,** *J* **= 8), 7.10 d (2H,** *J* **= 8), 7.30 d (1H,** *J* **= 8), 7.38 d.d (1H,** *J* **= 8, 7), 7.56 d.d (1H,** *J* **= 8, 7), 8.08 d (1H,** *J* **= 8). Found %: C 78.39; H 6.27; N 9.26. C₁₉H₁₈N₂O. Calculated, %: C 78.59; H 6.25; N 9.65.**

4'-(4-Chlorophenyl)-1,2,3,4,4',5'-hexahydro-3'*H***-naphthalene-2-spiro-3'-pyrazol-1-one (IIc).** Yield 60%, mp 87–89°C. IR spectrum, v, cm⁻¹: 920 s, 1020, 1100 s, 1160, 1290, 1300, 1355, 1450, 1490 s, 1600 s, 1680 v.s, 2860, 2940, 3030. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.73 m (1H), 2.08 d. t (1H, *J* = 14, 5), 2.81 d.t (1H, *J* = 17, 5), 3.26 m (1H), 3.94 d.d (1H, *J* = 7, 6), 4.97 d.d (1H, *J* = 18, 7), 5.01 d.d (1H, *J* = 18, 6), 7.09 d (2H, *J* = 8), 7.35 d (2H, *J* = 8), 7.40 d (1H, *J* = 7), 7.43 d.d (1H, *J* = 8, 7), 7.65 d.d (1H, *J* = 8, 7), 7.96 d (1H, *J* = 8). Found, %: C 69.66; H 4.86; N 8.84. C₁₈H₁₅ClN₂O. Calculated, %: C 69.57; H 4.86; N 9.01.

4'-(4-Bromophenyl)-1,2,3,4,4',5'-hexahydro-3'*H*-naphthalene-2-spiro-3'-pyrazol-1-one (IId). Yield

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 40 No. 4 2004

47%, mp 124°C. IR spectrum, v, cm⁻¹: 920, 1020, 1080, 1120, 1160, 1245, 1290, 1300, 1450, 1490 s, 1600 s, 1690 v.s, 2940, 3040. ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 1.89 m (1H), 2.12 d. t (1H, *J* = 14, 5), 2.90 d. t (1H, *J* = 17, 5), 3.59 m (1H), 3.93 t (1H, *J* = 7), 5.04 d (2H, *J* = 7), 6.85 d (2H, *J* = 8), 7.31 d (1H, *J* = 8), 7.38 d.d (1H, *J* = 8, 7), 7.58 d.d (1H, *J* = 8, 7), 8.08 d (1H, *J* = 8). Found, %: C 61.09; H 4.37; N 7.72. C₁₈H₁₅BrN₂O. Calculated, %: C 60.86; H 4.26; N 7.89.

4'-(4-Bromophenyl)-1,2,3,4,4',5'-hexahydro-3'*H***-naphthalene-2-spiro-3'-pyrazol-1-one (IIe).** Yield 67%, mp 138°C. IR spectrum, v, cm⁻¹: 910, 1040, 1260, 1300, 1455, 1520, 1600 s, 1690 s, 2830, 2940, 3040. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.75 m (1H), 2.14 d.t (1H, *J* = 14, 5), 2.79 d.t (1H, *J* = 17, 5), 3.19 m (1H), 3.71 s (3H), 3.82 t (1H, *J* = 7), 4.92 d (1H, *J* = 7), 6.84 d (2H, *J* = 8), 6.95 d (2H, *J* = 8), 7.39 d (1H, *J* = 8), 7.42 t (1H, *J* = 8), 7.64 t (1H, *J* = 8), 7.96 d (1H, *J* = 8). Found, %: C 74.49; H 5.88; N 8.88. C₁₉H₁₈N₂O₂. Calculated, %: C 74.49; H 5.92; N 9.14.

4'-(4-Nitrophenyl)-1,2,3,4,4',5'-hexahydro-3'*H***-naphthalene-2-spiro-3'-pyrazol-1-one (IIf).** Yield 69%, mp 80–82°C. IR spectrum, v, cm⁻¹: 915, 1020, 1090, 1160, 1300, 1350 s, 1450, 1540 s, 1600, 1690 s, 2950, 3040. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.75 m (1H), 2.05 d.t (1H, *J* = 14, 5). 2.85 d.t (1H, *J* = 17, 5), 3.30 m (1H), 4.16 d.d (1H, *J* = 8, 6), 5.05 d.d (1H, *J* = 18, 8), 5.12 d.d (1H, *J* = 18, 6), 7.40 d (1H, *J* = 8), 7.44 t (1H, *J* = 8), 7.53 d (1H, *J* = 8), 7.60 t (1H, *J* = 8), 8.12 d (1H, *J* = 8). Found, %: C 67.45; H 4.69; N 12.99. C₁₈H₁₅N₃O₃. Calculated, %: C 67.28; H 4.71; N 13.08.

4'-(4-Methoxyphenyl)-1,2,3,4,4',5'-hexahydro-3'H-naphthalene-2-spiro-3'-pyrazol-1-one (IIg). Yield 38%, mp 107°C. IR spectrum, v, cm⁻¹: 905, 1060, 1160, 1300, 1455, 1490, 1600 s, 1690 s, 2840, 2940, 3040. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.79 m (1H), 2.12 d.t (1H, *J* = 14, 5), 2.81 d.t (1H, *J* = 17, 5), 3.24 m (1H), 3.70 s (3H), 3.88 d.d (1H, *J* = 8, 6), 4.97 d.d (1H, *J* = 18, 8), 5.01 d.d (1H, *J* = 18, 6), 6.58 d (1H, *J* = 8), 6.64 d (1H, *J* = 3), 6.82 d. d (1H, *J* = 8, 3), 7.21 t (1H, *J* = 8), 7.39 d (1H, *J* = 8), 7.42 t (1H, *J* = 8), 7.65 t (1H, *J* = 8), 7.98 d (1H, *J* = 8). Found, %: C 74.52; H 5.91; N 9.26. C₁₉H₁₈N₂O₂. Calculated, %: C 74.49; H 5.92; N 9.14.

4'-(2-Chlorophenyl)-1,2,3,4,4',5'-hexahydro-3'*H*-naphthalene-2-spiro-3'-pyrazol-1-one (IIh). Yield

43%, mp 103°C. IR spectrum, v, cm⁻¹: 920, 1045, 1160, 1300 s, 1455, 1480, 1600 s, 1690 s, 2940, 3035. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.78 m (1H), 1.91 d.t (1H, *J* = 14, 5), 2.82 d.t (1H, *J* = 17, 5), 3.40 m (1H), 4.31 d.d (1H, *J* = 9, 3), 4.98 d.d (1H, *J* = 18, 9), 5.24 d.d (1H, *J* = 18, 3), 7.05 d.d (1H, *J* = 8, 2), 7.32 t.d (1H, *J* = 8, 2), 7.37–7.48 (3H), 7.66 t (1H, *J* = 8), 7.96 d (1H, *J* = 8). Found, %: C 69.42; H 5.04; N 8.77. C₁₈H₁₅ClN₂O. Calculated, %: C 69.57; H 4.86; N 9.01.

Ethyl 4'-aryl-1-oxo-1,2,3,4,4',5'-hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'-carboxylates IIIa–IIIf (general procedure). Ethyl diazoacetate, 2 g (18 mmol), was added to a solution of 3.7 mmol of the corresponding 2-arylmethylene-1,2,3,4-tetrahydro-naphthalen-1-one in 30 ml of anhydrous toluene, and the mixture was heated for 120 h at 90–95°C (the progress of the reaction was monitored by TLC). The solvent was distilled off under reduced pressure, and the residue was recrystallized from a 1:8 ethyl acetate–hexane mixture.

Ethyl 1-oxo-4'-phenyl-1,2,3,4,4',5'-hexahydro-1'H-naphthalene-2-spiro-5'-pyrazole-3'-carboxylate (IIIa). Yield 34%, mp 148- 149°C. IR spectrum, v, cm⁻¹: 1070, 1115, 1135, 1300, 1420, 1480, 1500, 1690 s, 2940, 3040, 3370. ¹H NMR spectrum, δ, ppm (J, Hz): 1.15 t (3H, J = 7), 1.69 d.t (1H, J = 14, 5), 1.82 m (1H), 2.74 d.t (1H, J = 18, 5), 2.91 m (1H), 4.01 m (2H), 4.65 s (1H), 7.08 br.s (2H), 7.26-7.38 m (4H), 7.41 t (1H, J = 8), 7.60 t.d (1H, J = 8, 1), 7.96 d (1H, J = 8), 9.25 s (1H). ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 14.9 (CH₃), 26.1 (CH₂), 29.2 (CH₂), 54.0 (CH), 60.8 (CH₂), 74.1 (C), 127.8 (CH), 128.3 (CH), 128.6 (CH), 129.4 (CH), 129.8 (CH), 130.7 (C), 134.9 (CH), 136.9 (C), 143.6 (C), 144.5 (C), 162.5 (CO), 194.1 (CO). Found, %: C 72.31; H 5.76%; N 7.95. C₂₁H₂₀N₂O₃. Calculated, %: C 72.40; H 5.79; N 8.04.

Ethyl 4'-(4-methylphenyl)-1-oxo-1,2,3,4,4',5'hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'carboxylate (IIIb). Yield 40%, mp 185–186°C. IR spectrum, v, cm⁻¹: 1070, 1115, 1250, 1300, 1420, 1600, 1700 s, 2930, 3040, 3370. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.10 t (3H, *J* = 7), 1.75 m (2H), 2.29 s (3H), 2.76 m (1H), 2.88 m (1H), 4.02 m (2H), 4.57 s (1H), 6.97 br.s (2H), 7.15 d (2H, *J* = 8), 7.30 d (1H, *J* = 8), 7.41 t (1H, *J* = 8), 7.58 t (1H, *J* = 8), 7.95 d (1H, *J* = 8), 9.30 s (1H). Found, %: C 72.64; H 6.05; N 7.29. C₂₂H₂₂N₂O₃. Calculated, %: C 72.91; H 6.12; N 7.73. Ethyl 4'-(4-chlorophenyl)-1-oxo-1,2,3,4,4',5'hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'carboxylate (IIIc). Yield 54%, mp 209–210°C. IR spectrum, v, cm⁻¹: 1020, 1070, 1095, 1115, 1130, 1250, 1300, 1430, 1490, 1600, 1690 s, 3040, 3370. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.12 t (3H, *J* = 7), 1.68 d.t (1H, *J* = 14, 5), 1.81 m (1H), 2.75 d.t (1H, *J* = 17, 5), 2.92 m (1H), 4.01 m (2H), 4.68 s (1H), 7.11 br.s (2H), 7.31 d (1H, *J* = 8), 7.37–7.45 (3H), 7.59 t (1H, *J* = 8), 7.95 d (1H, *J* = 8), 9.37 s (1H). Found, %: C 65.84; H 5.10; N 7.22. C₂₁H₁₉ClN₂O₃. Calculated, %: C 65.88; H 5.00; N 7.32.

Ethyl 4'-(4-bromophenyl)-1-oxo-1,2,3,4,4',5'hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'carboxylate (IIId). Yield 44%, mp 204°C. IR spectrum, v, cm⁻¹: 1015, 1075, 1110, 1255, 1300, 1420, 1600, 1700 s, 3365. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.11 t (3H, *J* = 7), 1.66 d.t (1H, *J* = 13, 5), 1.82 m (1H), 2.74 d.t (1H, *J* = 17, 5), 2.94 m (1H), 4.05 m (2H), 4.67 s (1H), 7.05 br.s (2H), 7.31 d (1H, *J* = 8), 7.42 t (1H, *J* = 8), 7.54 d (2H, *J* = 8), 7.61 t (1H, *J* = 8), 7.96 d (1H, *J* = 8), 9.36 s (1H). Found, %: C 58.91; H 4.51; N 6.31. C₂₁H₁₉BrN₂O₃. Calculated, %: C 59.03; H 4.48, N 6.56.

Ethyl 4'-(4-nitrophenyl)-1-oxo-1,2,3,4,4',5'-hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'-carboxylate (IIIe). Yield 56%, mp 203°C. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.10 t (3H, *J* = 7), 1.64 d.t (1H, *J* = 13, 5), 1.84 m (1H), 2.75 d.t (1H, *J* = 17, 5), 2.94 m (1H), 4.08 m (2H), 4.90 s (1H), 7.32 d (1H, *J* = 8), 7.40 br.s (2H), 7.42 t (1H, *J* = 8), 7.60 t.d (1H, *J* = 8, 1), 7.97 d (1H, J = 8), 8.23 d (2H, J = 9), 9.52 s (1H). Found, %: C 64.41; H 4.84; N 10.70. C₂₁H₁₉N₃O₅. Calculated, %: C 64.12; H 4.87; N 10.68.

Ethyl 4'-(3-nitrophenyl)-1-oxo-1,2,3,4,4',5'-hexahydro-1'*H*-naphthalene-2-spiro-5'-pyrazole-3'-carboxylate (IIIf). Yield 27%, mp 143°C. IR spectrum, v, cm⁻¹: 1070, 1110, 1240 s, 1300, 1350 s, 1470, 1535, 1600, 1700 s, 3365. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.12 t (3H, *J* = 7), 1.64 m (1H), 1.88 m (1H), 2.76 m (1H), 2.94 m (1H), 4.06 m (2H), 4.92 s (1H), 7.31 d (1H, *J* = 8), 7.41 t (1H, *J* = 8), 7.59 t (1H, *J* = 7), 7.62 br.s (1H), 7.67 t (1H, *J* = 8), 7.97 d (1H, *J* = 8), 8.17 d (1H, *J* = 7), 9.52 s (1H). Found, %: C 64.06; H 5.07; N 10.52. C₂₁H₁₉N₃O₅. Calculated, %: C 64.12; H 4.87; N 10.68.

REFERENCES

- 1. Molchanov, A.P., Stepakov, A.V., and Kostikov, R.R., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 264.
- 2. Molchanov, A.P., Lykholai, A.N., and Kostikov, R.R., *Russ. J. Org. Chem.*, 2001, vol. 37, p. 1517.
- Levai, A., *Khim. Geterotsikl. Soedin.*, 1997, p. 747; Mustafa, A. and Hilmy, M.K., *J. Chem. Soc.*, 1951, p. 3254; Kamecki, J., Perka, W., and Pijewska, L., *Pol. J. Chem.*, 1985, vol. 59, p. 285; Toth, G., Levai, A., Szollosy, A., and Duddeck, H., *Tetrahedron*, 1993, vol. 49, p. 863.
- 4. Toth, G., Szollősy, A., Levai, A., and Kotovych, G., J. Chem. Soc., Perkin Trans. 2, 1986, p. 1895.
- 5. Eaten, A.K and Ali, M.M., *Indian J. Chem.*, 1972, vol. 10, p. 968.